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Subdominant critical indices for the ferromagnetic 
susceptibility of the spin=$ Ising model 

D Bessis, P Moussa and G Turchettit 
DPh-T, CEN-Saclay, BP no 2, 91190 Gif-sur-Yvette, France 

Received 29 February 1980 

Abstract. Starting from the high-temperature series for the susceptibility of the spin-4 
ferromagnetic king models - square, planar triangular, sc, BCC, FCC, diamond, and HSC 
in four, five and six dimensions-we analyse the analytical structure near the critical point of 
the susceptibility by writing it as a Laplace transform in the variable log (1 - w/ wc),  where 
w = tanh(p-7). 

The interest of the method is that the coalescing singularities which sit at w = w ,  are 
spread out and can be analysed separately, the first subdominant critical indices appearing 
as stable poles of Pad6 approximants. We first recover the results for the two-dimensional 
models, with a high accuracy: y = 1.74995 and ys = 0.757. The most stable results in three 
dimensions are obtained for the diamond lattice: y = 1.2506 i 0.0015 and ys = 0.42 f 0.11. 
The other lattices give O s l o <  ys< 0.52. However, in all three-dimensional cases the 
amplitude of the subdominant singularity is less than a few per cent of the leading one. 
Therefore the uncertainties are large, but the subdominant singularity stays closer to the 
value y - 1 = 0.25 than to the field theoretical predicted one ys = 0.75. 

1. Introduction 

When calculating the susceptibility critical index y from the high-temperature series 
expansion, by using Pad6 approximations on the logarithmic derivative series (for a 
review see Gaunt and Guttmann (1974)), one is always aware of the fact that the 
presence of other singularities superimposed on the leading one can limit the precision 
of the calculation. It is therefore interesting to use a method of analysis which can in 
principle disentangle the various singularities, in such a way as to leave the leading 
singularities as free as possible from the influence of the other superimposed ones. 

Baker and Hunter (1973) proposed a method for achieving such a program. In this 
paper we shall systematically use the Baker-Hunter method, which we present in 0 2, 
from a slightly different and complementary point of view. 

Baker and Hunter analysed the singularities of the ferromagnetic susceptibility of 
the s = 4 Ising model for various lattices. They found no evidence for a subdominant 
singularity, However, a significantly larger number of terms of the series is now 
available (six more in the diamond lattice case). It is therefore interesting to re-examine 
the behaviour of the dominant index y and look for possible subdominant singularities. 

Similar analyses have been performed for various values of the spin (Camp and Van 
Dyke 1975, Camp etal 1976, Moore et a1 1979). Due to the difficulty of handling the 
general spin case, only 12 terms in the susceptibility series of the FCC lattice were 
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considered. The first subdominant singularity ys - 0.75 f 0.08 was found compatible 
with the field theoretical prediction. However, the residue of this subdominant 
singularity vanishes in the spin-; case (Saul et a1 1975). 

In addition, the values of y obtained from the susceptibility series were quoted to be 
(Camp and Van Dyke 1975) y = 1.250 (T::::?). They remain slightly (Gaunt and Sykes 
1973) but significantly larger than the most recent values obtained from field theoretical 
methods (Baker et a1 1976, Le Guillou and Zinn-Justin 1977). These authors 
computed the critical indices in the n-vector model using a method which incorporates 
asymptotic estimates of large order of the perturbative series. They obtain y =  
1.2402 f 0.0009. The classical ‘D log PadC’ analysis (Gaunt and Guttmann 1974) gives 
y = 1+250f 0.001 for the three-dimensional Ising model, using 17 terms of the suscep- 
tibility series. 

To try to clarify this situation we were led to analyse the susceptibility series (Domb 
1974, Sykes et a1 1972, Gaunt and Sykes 1973) for the follwing lattices: planar 
triangular (15 terms), square (21 terms), sc (Gaunt and Sykes 1979) (19 terms), 
diamond (21 terms), BCC (15 terms), FCC (McKenzie 1975) (15 terms). Results for the 
HSC lattices (Fischer and Gaunt 1964, Baker 1977) are also given in four, five and six 
dimensions, using only 12-term expansions. 

Of course we have deliberately restricted our analysis to the susceptibility series, 
since other thermodynamical quantities are known only with a significantly smaller 
number of terms. We were particularly interested in the variations of the susceptibility 
dominant and subdominant indices with the order of approximation. 

As explained in what follows, our analysis is by no means a fit, but a search for what 
could be reasonably assumed on the analytic structure of the susceptibility series. In 
addition, our intention was mainly to compare results obtained in various dimensions 
using the same set of Pad6 approximants. Our analysis uses only the subdiagonal 
[N- 1/N] Pad6 approximants, which give precise results in two dimensions. 

2. The method 

We consider the susceptibility ~ ( w ) ,  in zero magnetic field, where 

w = tanh(PJ). 

We shall introduce also the critical value 

w, = tanh(PJ) 

corresponding to the critical temperature P,. 
It is convenient to write x(w) in the form of a Laplace transform: 

Let us first analyse the possible structure of a ( A ) .  
(i) If a ( A )  is a pure point spectrum of the form 
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we see that 

n=O 
(2.5) 

Among the yn we can include the set of natural numbers 0, 1 ,2 ,  , . . , and therefore the 
analytic structure of x(w) near w c  is rather simple: it is made of an infinite (or possibly 
finite) set of coalescing logarithm-type singularities, plus a regular part coming from the 
set of integer values of the yn. 

A slightly more refined version of the point spectrum is to allow also for S function 
derivatives, and so we shall consider 

which gives rise to 

(ii) If a(A) has a continuous part in it, we can obtain a very rich structure; in 
particular, terms of the form 

(1 -E)yn[ -log( 1-31 -", 

where an is not a natural number. This is provided by a measure of the form 

Therefore an analysis of the measure c(A)  gives a deep insight into the analytic 
structure of ~ ( w ) .  

Associated with the measure a(A ) we introduce its Hilbert transform 

a ( A )  dA 

We see that S(w) will be a meromorphic function of w of the form 

n=O 1 - wyn 
when ~ ( w )  is of the simple form (2.5). 

If x(w) is of the form (2.7), then 

(2.10) 

(2.11) 

(2.12) 

By analysing S(w) in terms of Pad6 approximants we shall immediately recognise the 
nature of the singularities of S(w): if a pole of the Pad6 approximant is isolated and 
stable with the change of order of approximation, we shall have a contribution to x(w) 
of the simplest form. Double poles or doublets of poles very close to each other will 
indicate the presence of a logarithm in ~ ( w ) .  Real poles very unstable, by changing the 
order of approximation, will show the existence of a continuous spectrum for the 
measure. 
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Therefore the analysis of S ( w )  in terms of Pad6 approximants appears to provide much 
more than a s implef i t forx(w):  it may show what could be the analyticalstructure o f x ( w )  
near wc. 

It is possible to derive from the Taylor series expansion of ~ ( w )  near w = 0 the 
Taylor series expansion of S ( w )  around w = 0, at the same order, by a finite linear 
transformation. We write 

from which we obtain 

where pCk1 is the factorial moment of the measure a(A): 

F [ k ] =  A (A - 1) . . . (A - k + l ) a ( A )  dA. 

From the factorial moments we obtain the moments 

(2.14) 

(2.15) 

which are precisely the Taylor series coefficients of S ( w ) .  We can then construct the 
Pad6 approximants for S ( w ) .  Numerical calculations are made easier by using the 
recursion formulae 

(2.16) 

where the c k , j  are obtained from the relations 

Cn+l,j = Cn, j -1  -nCn,i, j = 1 , 2  , . . .  n, n = l , 2  , . . . ,  (2.17) 

with the auxiliary conditions 

The interested reader will find in the work of Baker and Hunter (1973) numerical 
examples on explicit test functions to which the previous method has been applied. 

To end this section it is interesting to remark that for x ( w )  to admit the represen- 
tation (2.3) it is necessary to have a minimal domain of analyticity in w. This domain is 
made of the interior of the circle of centre wc passing through the origin and cut from wc 
to 2wc. 

3. Discussions of the results 

We shall first consider the results obtained in two dimensions by analysing the square 
lattice and the planar triangular lattice. This analysis is important, because exact results 
are known for these cases, and we shali see how our approximations reproduce them. 



Ferromagnetic susceptibility of the spin-i Ising model 2767 

3.1. The two-dimensional models 

We write 

x ( w  ) = xo( 1 - :) - y o  + XI( 1 - c) -yl + . . . . (3.1) 

From now on, to follow standard notations, we shall use y instead of yo, and ys instead 
of y l ,  the corresponding amplitudes being x and xS. For the square lattice the exact 
results are (Wu et a1 1976) 

x = 0.7717340, 

xS = 0,34790. 

7 

3 

Y =5, 

Ys = 5, 
(3.2) 

Table 1 gives the values of the successive subdominant indices, as well as their 
associated amplitudes Xk, produced by the subdiagonal Pad6 [N - 1/N] approximants 
of increasing order. In these calculations we have used the exact value of w, = J 2  - 1;  
the effect of an error in wc, which is unavoidable in three dimensions, will be discussed 
later. We see in table 1 that, while the first 12 terms of the expansion already yield an 
excellent value for y, at least 18 terms are necessary to reach stability for ys .  

Table 1. The square lattice model. Calculation of the subcritical indices x ( w ) =  
Z ~ ~ ~ X ~ ( I - -  w / w ~ - ~ k ;  w , = & - i  (exact value). 

Number of 
of terms yo xo  Y1 X I  Y2 XZ 

~~ 

12 1,7469 0,7818 0.6282 0.432 0.024 -0.207 
14 1.7437 0.7909 0.4572 0.939 0,245 -0,724 
16 1.7407 0.7989 0.369-0.2i 0.10+0.4i 0.369+0.2i 0.10-0.4i 
18 1.7509 0,7686 0.7896 0.3225 -0.545 -0.10 
20 1.74998 0.7717 0.75797 0.3359 -0.324 -0.10 
22 1.74995 0.7719 0,7567 0,3365 -0.317 -0.10 
CO 1.750000 0,771734 0.750000 0.34790 

At order 18 we have 

y'18) = 1.7509, 

y:") = 0.7896, 

x(18) = 0,7686, 

xy3 = 0,3225. 

At order 22, we have 

y(22)  = 1.74995, 

yy)  = 0,7567, 

x(22) = 0,7719, 

p = 0.3365, 

(3.3) 

(3.4) 

to be compared with the exact values given in (3.2). We remark in table 1 that all poles 
of the Pad6 approximants are well separated and very stable with respect to a change of 
order. Even the second subdominant yz value is not far from the expected value of -a. 
Furthermore, the amplitudes of y 3 ,  y4 and y5 are extremely small, and these poles are 
far away: a formula with three poles represents x ( w )  extremely well. This is in 
agreement with a similar statement made by Sykes et a1 (1972). 
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More important is to see how an error in w, of the order of a few times affects y 
and y,. We find that the variations A y  and Ay, vary linearly with Aw, for Aw,/w, 
ranging from -9 x 1 0 - ~  to +9 x io5: 

a, Q 33, 

a s s  1500. 

9 = a,,-, Aw, 
Y wc 

--  AY^ Awc 
Ys WC 

- a,-, 

(3.5) 

For a typical error in w, of the order of 5 x which would correspond to the 
precision achieved for the three-dimensional models (Domb 1974), we shall have errors 
of the order of 1.5 x for y and 7% for y s .  These errors are much larger than the 
errors coming from the series truncation: therefore we shall use them to define the 
precision achieved on y and y s .  

Analysis of the planar triangular model provides essentially the same conclusion as 
for the square model. However, because only 16 terms of the susceptibility expansion 
are available, the results are slightly less accurate: see table 2. The exact values quoted 
in table 2 are obtained from Guttmann (1974, 1977). 

Table 2. The planar triangular-model. Calculation of the subcritical indices ~ ( w )  = 
Z ~ = ~ x ~ ( l - w / w , ) - ~ ~ ;  w,=2-J3 (exact value). 

Number 
of terms Yo xo Y1 x1 YZ x 2  

12 1.7518 0,841 0.846 0.16 -1.1 - 2i (-4 - 3i) x 
14 1.7520 0,840 0.850 0.161 -1.1 - 2i (-4 - 3i) x 
16 1.7503 0.846 0.789 0,162 -1-0.4i (-4-10i)x 
CO 1,750000 0.8471 0.75000 0.1758 

At order 16 we have 

Y‘’~’ = 1.7503, = 0,846, 

y;l6’ = 0,789, x;16) = 0.162. (3.6) 

We also see that poles of the approximation are stable and well separated from each 
other, and that their effect becomes negligible after the third. 

3.2. The three-dimensional models 

It is now with confidence that we shall apply the previous analysis to the three- 
dimensional models. 

The Taylor series expansions for the susceptibilities, as well as the best critical 
temperature values, have been taken from Domb (1974). We shall first analyse the 
diamond model in detail for which 22 terms of the expansion are available. 

Table 3 gives the numerical results of the analysis. We remark, as previously, that, 
while only 12 terms are necessary to reach an already stable and precise value of y, it is 
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Table 3. The diamond model. Calculation of the subcritical indices x ( w ) =  
Z?=ox~(l-W/Wc)-yk; w,’ =2.82641. 

Number 
of terms yo xo Y1 XI  Y2 x2 

12 1.2439 1.066 -1.3-0.9i -(3+0.3i)x lo-’ -1*3+0*9i -(3-0.3i)x lo-’ 
14 1.2436 1.067 -1.4-0.9i (-3-0-2i)x lo-* -1*4+0*9i -(3+0.2i)x low2 
16 1,2509 1.043 0.457 4.8 x -1.1 -9 x 
18 1,2503 1.046 0.385 4.8 x lo-’ -1.0 -9 x lo-‘ 
20 1,2509 1,043 0.468 4.8 x lo-’ -1.1 -9 x lo-’ 
22 1.2506 1,045 0.424 4.8 X -1.1 -9 x lo-’ 

necessary to go beyond 16 terms to stabilise ys. With 22 terms we get 

Y”~’  = 1.2506, x(22)  = 1,045, 

y?” = 0.424, X Y 2 ’  = 4.7 x 
(3.7) 

values achieved with w,’ = 2.82641. 
We notice that the value of the first subdominant amplitude is small compared with 

the two-dimensional case. However, all values of all poles and residues are stable when 
going from 16 to 22 terms of the perturbation series. We consider now the effect on y 
and ys of an error in w,. Taking the value Awc/ w c  = 4 x we have reproduced in 
table 4 the changes we get on the critical and subdominant indices. 

Table 4. Effect on the critical and subcritical indices of the three-dimensional models due to 
an error in the critical temperature w,. 

Model A w c l  w, YO xo  Y l  x1 

In the same way we have analysed the sc model (see table 5 ) .  Here we have less 
terms of the expansion available, and we obtain 

y(’O) = 1.2493, x ( ~ O )  = 1,019, 

yy) = 0.364, Xt20) = 8.5 x 
(3.8) 

Again all results are comparable with the case of the diamond. 
For the BCC (table 6) model we get 

y‘16’ = 1.2478, 

~ 1 ’ ~ ’  = 0,385, 

x “ ~ )  = 0,974, 

~ 1 ’ ~ )  = 3.6 X lov2, 
(3.9) 
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Table 5. The sc model. Calculation of the subcritical indices x ( w ) =  
zF='=,xk(l-w/w,)-yk; w;' ~ 4 . 5 8 4 4 .  

Number 
of terms yo xo Y1 x1 Y 2  x2 

12 1.2494 1.019 0,3979 8.6 X -1.16 -2.7 x lo-' 
14 1.2493 1.019 0,3551 8.4 x 1 0 - ~  -1.15 -2.7 x lo-* 
16 1.2495 1.018 0.4620 8.6 x lo-' -1.2 -2.7 x 
18 1.2494 1,019 0,391 8.5 x -1.2 -2.7 x lo-' 
20 1.2493 1.019 0.3636 8 . 5  x -1.15 -2.7 x lo-* 

Table 6. The BCC model. Calculation of the subcritical indices x ( w ) =  
E?='=, xk(l-w/wc)-yk; w;' =6*4055. 

Number 
of terms yo xo 71 x1 Y2 x2 

12 1,2491 0,969 0,494 4 x -1.86 -8.9 x 1 0 - ~  
14 1.2481 0.973 0.412 3.7 x lo-' -1.68 -9.6 x 1 0 - ~  
16 1,2478 0.974 0.385 3.7 x lo-* -1.59 -9.9 x 1 0 - ~  

and for the FCC (table 7) model we have 

(3.10) 

Table 7. The FCC model. Calculations of the subcritical indices x(w)= 
zF='=, Xk(1 - W / W E ) - ~ ' ;  W,' = 9.830. 

Number 
of terms yo xo Y1 x1 72 x2 

8 1.2507 0.959 -0.572 0.038 0.482 + 2i mod < 1 0-3 
10 1.2458 0.976 0,053 0.029 0.903 -0.058 
12 1.2457 0.977 0.126 0.034 0,677 -0.01 1 
14 1.2457 0,977 0.176 0.041 0.559 -0.189 
16 1.2458 0.977 0.135 0.035 0,652 -0.12 

With the exception of the FCC model, for which the Pad6 approximants exhibit 
anomalous complex poles and fast variation with the critical value w,, table 4 shows that 
all the other models give consistent results. The most stable values are obtained for the 
diamond, for which a large number of terms is available. In addition the variation of ys 
with w, is slow. For the diamond we have 

If we want to include all three-dimensional models, we find that the inequality 
0.08 < y,<O*52 is compatible with all models. 
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3.3. The HSC models in dimensions four, five and six 

We give, for completeness, the results for models of dimension greater than three. For 
all these models only 12 expansion terms are  available. 

Tables 8-10 show the great stability of the results; the dominant singularity is 
compatible with the classical value y = 1. 

Table 8. The HSC model in four dimensions. Calculation of the subcritical indices 
x ( W )  =X?=o x k ( 1 -  w/w, ) - ' * ;  w,= 0,148766. 

Number 
of terms yo xo Y1 X I  YZ xz 

8 1.1023 1.077 0.057 -7.4 x -2.5 -3 x 10-~  

12 1.0926 1.114 0.410 -1.ox lo-' -1.3 -1 x 
10 1.0956 1.100 0.305 -9.2 x lo-' -1.5 -8 x 

Table 9. The HSC model in five dimensions. Calculation of the subcritical indices 
x(w)= X ; f , o x k ( l -  w/w,)-' ';  w,= 0.113541. 

Number 
of terms yo xo Y1 XI  Y2 x2 

8 1.0380 1.1217 0,289 -0,119 -2.36 -2.3 x 1 0 - ~  
10 1.0335 1,1410 0.372 -0,137 -1.85 -3.8 x 
12 1.0331 1,1430 0.381 -0.139 -1.79 -4.0 x 1 0 - ~  

Table 10. The HSC model in six dimensions. Calculation of the subcritical indices 
x ( W ) = 8 ~ = o x k ( l -  W / W , ) - ' ' ;  ~,=0.920979.  

Number 
of terms yo xo Y1 x1 Y z  xz 
_ _ _ _ _ ~ ~  ~~ 

8 1.0126 1.129 0,332 -0.127 -2.33 -1.7 x 
10 1.0105 1.1386 0.367 -0.136 -2.05 -2.2 x 1 0 - ~  
12 1.0105 1.1386 0,367 -0,136 -2.05 -2.2 x 1 0 - ~  

4. Discussion and conclusion 

One of the most interesting aspects of the method of subdominant indices is that, by 
spreading out the possible coalescing singularities of the magnetic susceptibilities at 
T = T,, it allows one to calculate the critical index itself free of interferences coming 
from these singularities. 

Therefore a more reliable result is expected. Furthermore, and even more 
important, is the fact that the stability of the poles of the various Pad6 approximants 
associated with the inverse Laplace transform of x( w )  in the variable log( 1 - w/ w,) give 
a rather clear insight into the analytical structure of x ( w )  near w,. In two dimensions, 
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using the exact critical temperature and the 22 terms of the expansion of the square 
lattice, we have obtained 

y = 1,74995 (exact 1.75000), 

ys = 0,7567 (exact 0.7500) 
(4.1) 

for the leading critical index and the first subdominant one. 
In three dimensions we have obtained 

y =  1.2506*0*0015, ys= 0.42 * 0-1  1 (4.2) 

using the 22 terms of the expansion of the diamond lattice. All the other models known 
with less terms give values consistent with the previous ones with larger uncertainties 
(with the exception of the FCC model, which gives rise to slightly lower values for both y 

The value y = 1.2506 f 0.0015 remains higher than the field theoretical cal- 
culations, which give (Baker et a1 1976, Le Guillou and Zinn-Justin 1977) y =  
1,241 f 0.002. 

However, one remarks in our method that, when y is computed with a small number 
of terms of the high-temperature series, its value is significantly smaller than 1.250. In 
fact, the value of y computed for the diamond with 8 and 10 terms seems to be stable 
and gives 

and 

y@' = 1,2406, y"O' = 1.2405. (4.3) 
If we had known only 10 terms, we would have concluded a good agreement with the 
field theoretical approach. 

Our conclusion is that this persistent discrepancy remains to be explained. Gaunt 
and Sykes (1979) recently made a similar statement. 

We come now, to the discussion of the first subdominant index. 
The field theoretical approach (Wegner 1972, BrCzin et a1 197.6) predicts the 

existence of a subdominant universal singularity with the value 

Y , = Y - W U  =1*24-0*49=0.75 .  

Another possibility is the existence of a subdominant 'regular' singularity at y - 1 2: 
0.25. Our results are more in agreement with the last possibility; ys = 0.25. However, 
the amplitude remains very weak (of the order of 5% of the leading one in the diamond 
case). Therefore the uncertainties in the value of the subdominant index remain large. 
We have also performed additional tests by superimposing a singularity at y - 1 with an 
amplitude of 10% of the dominant one and obtained a very neat stabilisation around 
0.25 k 0.10. Therefore we believe that the subdominant singularity has a small 
amplitude (less than 5 % )  and a position closer to 0.25 than to the field theoretical 
predicted value. In the two-dimensional case the subdominant singularity has an 
amplitude of 45% of the dominant one, which allows a much better precision in the 
determination of the corresponding index. We want to point out that our results rely 
upon the choice of subdiagonal Pad6 approximants. In addition we have used the 
values of critical temperature given in Domb (1974) and McKenzie (1975). Further 
analysis will be required if the critical temperature presently admitted happens to be 
modified after calculation of a larger number of terms in the series expansion. The 
relation between the dominant index y and the critical temperature is clearly exhibited 
in a recent analysis of the BCC lattice (Fischer and Au-Yang 1979). In the FCC lattice it 
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has also been observed recently (McKenzie 1979) that, when the critical parameter wc is 
decreased, y decreases and ys increases. Our results show variations in the same 
direction. 

A possible explanation for the small discrepancy between field theory and the 
high-temperature analysis calculation of y, as well as for the larger discrepancy in ys, is 
that, as suggested by Baker (1977), hyperscaling may be slightly violated for the spin-4 
Ising models. Such a violation, even if very small, is clearly greatly enhanced if one 
considers sensitive parameters such as the subdominant indices. 
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